GNUS.AI
  • 🧠About GNUS.AI
    • GNUS.AI
    • Introduction
    • Features and Benefits
      • Scale and cost-efficiency
      • GNUS.ai Network vs. Centralized xAI 100k Cluster
        • 1. Executive Summary
        • 2. Introduction
        • 3. Understanding the GNUS.ai Decentralized Network
        • 4. The Centralized xAI 100k Cluster Explained
        • 5. Comparing CAPEX and OPEX
        • 6. Payout Structure and Profitability
        • 7. The Deflationary Token Mechanism
        • 8. Projected Token Price Appreciation
        • 9. Summary Comparison Tables
        • 10. Conclusion and Next Steps
        • Final Thoughts
      • Tokenomics
    • Public Roadmap
    • Whitepaper
    • Meet the Team
    • Why GNUS.AI
      • Works Everywhere
      • Customizable
      • Fast
      • Secure
        • Secure 2FA with TOTP and zk-SNARKs
    • How Does It Work?
      • Idle Central Processing (GPU)
      • Distributed Computation
      • Dynamically Adjusted Resource Allocation
  • 🖥️Technical Information
    • Super Genius Blockchain Technical Details
      • SuperGenius DB Layout
      • AI Data Blocks
      • Slicing Data for Macro MicroJobs
      • Verification and Hash Results from Processing
      • Diagram of the internal blockchain, blocks and processing functionality
      • IPFS Pub Sub
      • SG Consensus Algorithm Implementation
      • Account creation with ECSDA and El Gamal
      • Key Derivation Function
      • El Gamal encryption
      • Prover specification
      • C++ Coding Standards
      • SuperGenius processing component information
        • Processing worker app workflow
        • Job Processing Flow
      • Super Genius DAG Blockchain
      • Minimal MMR Proof System with UTXOs
      • Cross-chain Bridging through SuperGenius
        • Overview of Technical Details for Cross-Chain Bridging Flow
        • Message Creation and Leader Election
        • Leader Ownership and Verification Channel Creation
        • Node Verification and Voting
        • Signature Collection and Aggregation
        • Destination Chain Submission and Validation
    • Hybrid Smart Contract
      • GNUS.ai Ecosystem: A Unified Network of Intelligence
      • Structure
        • Structure Details
      • Encoded IDs
    • Our Smart Contract Testing Philosophy
    • AI Systems
      • Overview
      • Query Workflow
      • Data Storage
      • Pub/Sub Communication
      • Retraining Mechanism
    • Zero Knowledge Proofs
      • Proof schemes and Elliptical Curves
  • Resources
    • Contact Us
    • Contracts
    • FAQS
    • Multisig Wallets
    • Glossary
    • Official Links
Powered by GitBook
On this page
  1. Technical Information
  2. Super Genius Blockchain Technical Details

SuperGenius DB Layout

This page explains the SuperGenius Layout of the CRDT database

The storing of processing data, transaction data, proof data and blockchain data of SuperGenius is done in CRDT database. The storage is accessed by a Key-Value mechanism, where each type of data has a specific format of key, making sure that each SuperGenius node instantly knows how to construct the key to search for a specific value.

The processing data comes from splitting a Job into Macro and Micro Jobs. Their key format is expected to be:

Processing/${JobID}/${SubTaskID}/${ProtocolType}/Output

The IDs are assigned when the input data is split into workable packets, as for the Protocol Type is associated with the kind of protocol used for the processing (IPFS, MNN, file...)

The remainder of key types formats start with "bc-" followed by the 3 digit ID of the type of net being used.

bc-${net_iD}/

The blockchain data is store in the format:

bc-${net_ID}/blockchain/${blockNumber}/tx/${transactionNumber}
PreviousSuper Genius Blockchain Technical DetailsNextAI Data Blocks

Last updated 1 year ago

🖥️